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de type 4 H  dans laquelle est favoris6e l'extension d'une 
deuxieme faute distante de 6d s de la premi6re con- 
duisant alors fi 12H. 

(d) n = 4 ( P =  16) 
| i 

4H + : + - - - + + - - + + - - + + - - + i + - -  (22) 
i ,:,l, ,,,1, 

| i 

+ : - - -  + + - - +  + - - +  + - - -  + ' , - - -  (VII) 
Q ¢ 

i ! 

16H +i . . . .  + + -  + + + - -  + + - -  + i - - - -  (32132221) 
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Comme pour n = 3, l 'extension d'une seule faute, 
ainsi r6p6t6e toutes les 16 couches de soufre, conduit fi 
une structure poss6dant une longue s6quence de type 
4H;  d'autres fautes doivent donc s'y d6velopper. Si une 
deuxi6me faute, distante de la premi6re de 6d s se 
d~veloppe, on obtient le polytype 16H (3213221) dont 
la structure correspond bien/L celle qui a 6t6 d6termin6e 
exp6rimentalement. I1 subsiste malgr6 tout dans ce cas 
une zone relativement &endue de structure (22) non 
faut6e dans laquelle sera favoris6e l'extension d'une 
faute distante de 6d s de celles existant d6jfi dans le 
cristal. Deux possibilit6s sont alors offertes: d~veloppe- 
ment de la faute fi une distance 6d s de la faute not6e 
(2), ou bien de la faute not6e (3). Ces deux 6ventualit6s 
conduisent toutes deux au m~me r6sultat: 48R [soit 
(32132131) 3, soit (32131321)3 qui ne different que par 
une permutation circulaire]. 

(1) (21 
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(VIII) 

On peut noter que l'extension de cette troisi6me 
famille de fautes doit &re moins favoris6e que celle des 
premieres en raison du fait qu'elle se trouve fi une 
distance inf6rieure fi 6d s d'une autre faute. 

De faqon g6n+rale, on constate que l 'apparition des 
polytypes d6jfi observ6s s'explique par l'existence des 
dislocations vis les plus probables dans 4H:  celles qui 
ont les vecteurs de Burgers les plus courts. Les plus 
fr6quemment observes (12R, 8H, 24R) correspondent 
aux dislocations vis les plus fr~quentes (V n = 4 et 8d s) 
alors que 12H, 16H et 48R, issus de dislocations de 
vecteurs de Burgers plus longs (12 et 16ds), sont plus 
rares. 

La coincidence qu'on peut remarquer entre les 
r~sultats exp6rimentaux disponibles (p~riode, structure 
et fr6quence d'apparit ion des polytypes) et les effets 
qu'on peut attendre du m6canisme propos6 confirme la 
validit6 de ce dernier. Ainsi les polytypes de sulfure de 
titane peuvent &re consid6r6s comme le r6sultat de 
transformations de phase dans un milieu cristallin 
imparfait. 
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The variance of X-ray intensities is W = Z '2 + (k -- I)S 2 - Y-i Qi If/j4, where Z' is the sum of the squares of 
the moduli of the atomic scattering factors ft, S is the modulus of the sum of the squares of the atomic 
scattering factors, k is 1 for noncentrosymmetric crystals and 2 for centrosymmetric, Q~ is an integer 
depending on the space group and Wyckoff position, and the summation is over the atoms of the asymmetric 
unit. Values of Qi for the general reflexions and general positions are tabulated for the line, plane and space 
groups; they tend to be moderately positive for the less symmetric space groups and large and negative for 
the more symmetric. Special reflexions and special positions are discussed briefly. Dispersion shows itself in 
the distinction between Z' and S and in the modulus signs in the final term. 
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1. Introduction 

1.1. Wilson (1951) derived expressions for the variance 
of the intensity of X-ray reflexions from crystals 
belonging to the space groups P1 and P1. The subject 
has become of some interest again in connexion with the 
values of the residual R 2 [Wilson, 1969, 1974, 1976; 
Lenstra, 1974, and private communications; see 
Srinivasan & Parthasarathy (1976) for numerous 
references]. It is also relevant to statistical tests for the 
determination of space groups. Those proposed by 
Wilson (1949a,b, 1950a,b, 1951), Howells, Phillips & 
Rogers (1949, 1950) and others [for references see 
Srinivasan & Parthasarathy (1976)] either make the 
assumption that the intensity distribution function has 
one of the ideal asymptotic forms (Wilson, 1949b) or 
that interactions between symmetry elements are 
negligible. As will be seen below, in some noncentro- 
symmetric space groups of high symmetry there are 
interactive effects that shift their statistical properties 
some way toward those of centrosymmetric space 
groups otherwise of low symmetry. 

1.2. The variance of the intensity of X-ray reflexions 
having roughly the same values of (sin 8)/2 is defined by 

W = (IFI 4 ) -  (IFIZ) 2, (1) 

where F is the structure factor of the hkl reflexion and 
the averaging is over values of hkl. It is well known that 

(Ir12) = Z If/I 2 (2) 
i 

= s ,  (3) 

where Z" is the sum of the squares of the moduli of the 
scattering factors of the atoms in one unit cell of the 
crystal (Wilson, 1942). If the averaging is done over 
zones or rows of reflexions, instead of over the whole 
array, the average intensity may be greater than 
(Wilson, 1950a,b), a phenomenon that may aid space- 
group determination (Rogers, 1950). The increased 
intensity of such a zone or row is compensated by a 
decrease in the neighbouring region of reciprocal space 
(Wilson, 1964). For the present purpose it is con- 
venient to group together atoms equivalent by sym- 
metry (atoms occupying the same 'Wyckoff position'). 
Equation (2)then becomes 

(IFI2) = Z pilfi 12, (4) 
i 

where Pi is the multiplicity (number of symmetry- 
equivalent atoms) of the Wyckoff position and the 
summation is now over all non-equivalent groups of 
atoms. 

1.3. There are no such simple general results for the 
average values of the fourth power of the modulus of 
the structure factor. The problem was considered by 
Karle & Hauptmann (1953) and Hauptmann & Karle 
(1953) in connexion with structure determination for 

the space groups P1 and P1 already treated by Wilson 
(1951), and for some other space groups in later 
papers. Wilson (1976), generalizing results obtained by 
Foster & Hargreaves (1963), quoted without proof the 
equation 

(IFI 4') = 2Z '2 + ( k -  I)S 2 -  ~ [(I + k)p~-qi] If/l', (5) 
i 

where S is the modulus of the sum of the squares of the 
atomic scattering factors (and is thus different from 27, 
the sum of the squares of the moduli of the atomic 
scattering factors, when dispersion is appreciable), k is 
1 for noncentrosymmetric crystals and 2 for centro- 
symmetric, and qi is a number depending on the space 

Table 1. Some statistical properties of line and plane 
groups (one- and two-dimensional space groups) 

All entries refer to general Wyckoff  positions. Except as indicated in the 
column headed 'Special reflexions', the values of Pi, qi and Q~ refer to 
general (hk) reflexions. 

Group p, q, Qi Special reflexions Pi qi Qi 

• "/'1 1 1 1 None 
~m 2 6 6 None 

p I I I 1 None 
p2 2 6 6 None 
pm 2 6 2 Ok 4 16 ! 6 

hO 2 6 6 
pg 2 6 2 Ok, k even 4 16 16 

odd 0 0 0 
average 2 8 8 

h0 2 6 6 
cm hk, h + k even 8 96 32 

odd 0 0 0 
average 4 48 16 

Ok, k even 16 256 256 
odd 0 0 0 
average 8 128 128 

h0, h even 8 96 96 
odd 0 0 0 
average 4 48 48 

pmm 4 36 12 h or k -- 0 8 96 96 
pmg 4 36 12 Ok 8 96 96 

h0, h even 8 96 96 
odd 0 0 0 
average 4 48 48 

pgg 4 36 12 0k, k / 
h0, n!  even 8 96 96 

odd 0 0 0 
average 4 48 48 

cmm hk, h + k even 16 576 192 
odd 0 0 0 
average 8 288 96 

hO, even 32 1536 1536 

odd 0 0 0 
average 16 768 768 

p4 4 36 12 None 
p4m 8 168 24 Ok or h0 16 288 480 
p4g 8 168 24 0k, k 1 

h 0 , , j  even 16 288 480 

odd 0 0 0 
average 8 144 240 

p3 3 15 3 None 
p3m I 6 66 6 h = k etc. 6 90 18 

h etc. = 0 12 240 48 
p31 m 6 66 6 h = - k  etc. 6 90 i 8 

h etc. = 0 12 240 48 
p6 6 90 18 None 
p6m 12 396 36 hh or Ok or hO 24 1440 288 
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group and the Wyckoff  position. It is, in fact, the mean 
value of the fourth power of the trigonometrical 
structure factor for the Wyckoff  position, and is shown 
to be an integer in § 3.2. The summation is over all non- 
equivalent groups of atoms; not all groups need occupy 
the same Wyckoff  position. It is convenient to intro- 
duce a symbol for the multiplier of I f/la: 

Q, = (1 + k)p~ - qi. (6) 

Foster & Hargreaves pointed out that the space groups 
in the triclinic, monoclinic and orthorhombic systems 
can be arranged in seven categories that have the same 

Table 2. Some statistical properties of  the three- 
dimensional space groups with primitive lattices 

All entries refer to general Wyckoff positions, and (except where indicated 
in the final column) to general (hkl) reflexions. 

values of Pt, qi and Qi for the general reflexions, within 
trivial factors depending on the lattice, but the two 
space groups Fdd2 and Fddd are exceptions. These 
exceptions are in accordance with a general empirical 
rule (§ 3.4): the statistical properties of the general 
reflexions depend only on the point group if the space 
group contains no single symmetry element of multi- 
plicity higher than three. 

1.4. The present paper gives the derivation of 
equation (5) and evaluates qi and Qi for the general 
reflexions and general Wyckoff positions for the 
remaining space groups. The values for the line groups 
(one-dimensional space groups) and plane groups (two- 
dimensional space groups) are given in Table 1. These 
groups are simple enough for the table to contain some 

Table 3. Some statistical properties of  the three- 
dimensional space groups with body-centred lattices 

Point 
group Space group(s) Pi q, Q~ Notes 

1 P I  1 1 1 
i Pi 2 6 6 
2 All P 2 6 2 See Table 7 
m All P 2 6 2 See Table 7 
2/m All P 4 36 12 See Table 7 
222 All P 4 28 4 
rnm2 All P 4 36 - 4  
mmm All P 8 216 - 2 4  
4 P4, P42 4 36 - 4  

P4 ~, ,043 4 36 - 4  I even 
4 20 12 l odd 
4 28 4 average 

zl p4 4 28 4 
4/m All P 8 216 - 2 4  
422 P422, P42,2, P4222, 8 136 - 8  

P422j2 
P4122, P4322, P4,2,2, 8 136 - 8  I even 

P432,2 8 104 24 I odd 
8 120 8 average 

4turn All P 8 168 - 4 0  
zl2m All P 8 136 - 8  
J, m2 All P 8 136 - 8  
4/mmm All P 16 1008 - 2 4 0  
3 All P and R 3 15 3 

Both 6 90 18 
32 All P and R 6 66 6 
3m All P and R 6 66 6 
3m All P and R 12 396 36 
6 P6, P63 6 90 - 18 

P6,, P62, P6~, P65 6 90 - 18 l = 3n 
6 54 18 l :~ 3n 
6 66 6 average 

6 P6 6 90 - 18 
6/m P6/rn, P6~/rn 12 540 -108  
622 P622, P6322 12 324 - 3 6  

P6122 , P6222, P6422, 12 324 - 3 6  I = 3n 
P6~22 12 252 36 I :~ 3n 

12 276 12 average 
6turn All P 12 396 -108  
6m2 AIIP 12 396 - 1 0 8  
6/rnmm AlIP 24 2376 -648  
23 Both P 12 276 12 
m3 AlIp  24 1800 - 7 2  
432 P432, P4232 24 1272 - 1 2 0  

P4,32, P4j32 24 1272 - 120 any index even 
24 984 144 all indices odd 
24 1200 - 4 8  average 

43m BothP 24 1272 - 1 2 0  
m3m AiIP 48 8784 -1872 

All entries refer to general W y c k o f f  posit ions and general (hkl) 
reflexions. 

Point 
group Space  group(s)  Pi qi Qt 

222 1222, 121212 , 8 224 32 
mm2 Imm2, lba2, Ima2 8 288 - 3 2  
mmm Immm, Ibam, Ibca, lmma 16 1728 - 192 
4 14 8 288 - 3 2  

14_1 8 224 32 
14 8 224 32 

4/m 14/m 16 1728 - 192 
141/a 16 1536 0 

422 1422 16 1088 - 6 4  
14122 16 960 64 

4mm 14mm, 14cm 16 1344 - 3 2 0  
141md, l_4~cd _ 16 1088 - 6 4  

42m I4m2,14c2, I42m 16 1088 - 6 4  
I42d 16 960 64 

4/rnmm 14/mmm, 14/mcm 32 8064 - 1920 
14~/amd, 14,/acd 32 6528 - 3 8 4  

23 123,1213 24 2208 96 
m3 Im3, la3 48 14400 - 5 7 6  
432 1432 ,14 j32  48 10176 - 9 6 0  
43m 143m, 143d 48 10176 - 9 6 0  
m3m Im3m, la3d 96 70272 - 14976 

T a b l e  4 .  S o m e  stat is t ical  propert ies  o f  the three- 
d imensional  space groups with end-centred (one-face- 

centred) lattices 

All entries refer to general W y c k o f f  posit ions and general (hkl) 
reflexions. 

Point 
group Space  group(s)  Pi qi Oi 

2 B2 4 48 16 
m Bin, Bb 4 48 16 
2/m B2/m, B2/b 8 288 96 
mm2 Cmm2, Cmc2~, Ccc, Amm2, 8 288 - 3 2  

A bm2, Area2, A ba2 
mmm Cmcm, Cmca, Cmmm, 16 1728 - 1 9 2  

Cccm, Cmma, Ccca 
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information about zones and rows of reflexions as well. 
Values for three-dimensional space groups with 
primitive lattices are given in Table 2, with end-centred 
lattices in Table 3, with body-centred lattices in Table 
4, and with face-centred lattices in Table 5. The cal- 
culations of qi from the trigonometrical structure 
factors become very tedious and subject to human 
erroi" for the more symmetric space groups, and some 
upper bounds for Qi and lower bounds for qi are given 
in Table 6. The derivation of these bounds is given in § 
3.5, and their use has led to the detection of several 
errors in the calculation. It is observed empirically that 
q~ and Qi are integral multiples of p~; all apparent 
exceptions were found on recalculation to be incorrect. 
This observation suggests that there should be some 
more direct method of evaluating Qi, but none has been 
found. Special sets of reflexions and special Wyckoff 
positions are briefly discussed in §§ 5 and 6. 

1.5 For a given number of atoms in the Wyckoff 
position, the trend is for the variance to increase with 
increasing symmetry, though 'degree of symmetry'  is 
perhaps to some extent subjective. The variance is, 
from equations (1), (5) and (6), 

W =  (IFI 4 ) -  (IFI2) 2 (7) 

= S 2 + ( k -  1)8 2 -  Z Qilf/14. (8) 
i 

Addition of a centre of symmetry to whatever 
symmetry may already have been present thus approxi- 
mately doubles the variance for the same cell content. 
The effect of other symmetry elements is generally 
small in comparison. The first term in equation (8) and 
the middle term for centrosymmetric crystals are 
approximately proportional to the square of the number 
of atoms in the unit cell, whereas the third term, the 
only one that depends on symmetry other than centro- 
symmetry, is roughly proportional to the first power of 

Table 5. Some statistical properties o f  the three- 
dimensional space groups with face-centred lattices 

All entries refer to general Wyckoff positions and general (hkl) 
reftexions. 

Point 
group Space group(s) Pi qi Qi 

222 F222 16 1792 256 
ram2 From2 16 2304 -256 

Fdd2 16 1792 256 
mmm Fmmm 32 13824 - 1536 

Fddd 32 10752 1536 
23 F23 48 17664 768 
m3 Fro3 96 115200 -4608 

Fd3 96 105984 4608 
432 F432 96 81408 -7680 

F4132 96 72192 768 
~,3m F43m, F£13c 96 81408 -7680 
m3m Fm3m, Fm3c 192 562176 - 119808 

Fd3m, Fd3c 192 ') ? 

Table 6. Lower  bounds fo r  qi and upper bounds fo r  Qi 
for  some symmetry elements and combinations o f  

symmetry elements 

Minimum Minimum Maximum 
symmetry qi Qi 

1 2p~ -Pi Pi 
i 3p~ - 3Pi 3Pi 
4 2 p~ + Pi -- Pi 

4 + i (4/m) 3p~ + 3Pi -3Pi 
6 2p~ + 3pi --3Pi 

6 + [ (6/m) 3p~ + 9Pi -gpi 

the number of atoms. Its effect is thus proportionally 
small when the total number of atoms is large but the 
values of Pi are small or moderate. It could become 
comparable with the other terms if the total number of 
atoms is only moderate, but the crystal is highly 
symmetric, so that Pi is large and Qi is large and 
negative. To illustrate this, imagine an accommodating 
element that crystallizes in three allotropic forms, each 
with 24 atoms in the unit cell. The triclinic form, space 
group P1, has 

W--  1(24)2f 4 -  2 4 f  4 

= 5 5 2 f  4. (9) 

The monoclinic form, space group P2/m, with six 
atoms in the asymmetric unit, has 

W =  2(24)2f 4 -  6 ( 1 2 f  4) 

-- 1080f  4, (10) 

while the hexagonal form, space group P6/mmm,  with 
one atom in the asymmetric unit, has 

W - 2 ( 2 4 ) 2 f  4 + 6 4 8 f  4 

= 1800f  4. (11) 

(Dispersion has been neglected; the values of Qi needed 
are taken from Table 2.) In this extreme case, there- 
fore, going from moderate to high symmetry has a 
greater effect than going from no symmetry to 
moderate centrosym metry. 

1.6. It should perhaps be mentioned explicitly that 
the variance of X-ray intensities under discussion here 
is that inherent in the atomic arrangement. The 
variance actually observed will be increased by 
statistical fluctuations in the counting rates and other 
experimental difficulties (Wilson, 1951), and would be 
decreased by uncorrected extinction (Rogers, Stanley 
& Wilson, 1955). The variance would also be altered by 
any non-crystallographic symmetry (Lipson & 
Woolfson, 1952; Wilson, 1952, 1956; Rogers & 
Wilson, 1953). In practical applications it is often 
advantageous to normalize the structure factors in the 
sense of Bertaut (1955), as larger ranges of (sin 0)/2 
can be used in the averaging. 

1.7. The numerical values in the tables have been 
checked in various ways, and numerous errors in the 
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initial calculations have been corrected. It cannot be 
hoped, however, that the tables are entirely free from 
error, especially for the more symmetric space groups 
with large numbers of atoms in the Wyckoff  position. 
Though the tables give a correct overall impression, it is 
recommended that any value required for a specific 
application should be recalculated independently. The 
author would be glad to receive notification of any 
errors found. 

2. Calculat ion  o f  the m e a n - s q u a r e  intensity 

2.1. The expressions for structure factors are all of the 
form 

F = Y f i J  i, (12) 
i 

where f~ is the scattering factor of the atom in the / th  
Wyckoff  position and Ji is a trigonometrical expression 
depending on the atomic coordinates xi,Yi, Z i and the 
indices of reflexion h,k,l. The .f 's and J ' s  may be 
purely real, or complex, depending on the space group 
and the importance of dispersion. The J ' s  are listed in 
International Tables for  X-ray Crystallography (I 95 2) 
for the general Wyckoff  positions. They have the 
property that when averaged over a large set of values 
of hkl 

( J , d * ) =  p i (13) 

with variance q i -  P~, 

( J r / * )  = 0, i : # j ,  (14) 

with variance p~, where, as in equation (4), Pi is the 
multiplicity of the ith Wyckoff  position and qi has the 
same significance as in equation (5). For the non- 
centrosymmetric space groups there are two further 
relations: 

(JiJi)  ----0 (15) 
with variance qi, and 

(JiJj) = 0 (16) 

with variance p~. The intensity of a reflexion is, from 
equation (12), 

1 = r r *  = ~ f ~ *  Ji J*, (17) 
ii 

so that the average intensity of a reflexion is 

(1)  : "~S Piftft* = Z Pill/12, (18) i i 
recovering equation (4). The square of the intensity of a 
reflexion is given by the square of equation (l 7): 

12= ~ f i f j  A f t  JiJ) JkJt • (19) 
(ik/ 

In view of equations (14)-(16)  most terms in the 
expression for I z vanish on averaging over a large set of 
values of hkl; those that remain have i, j ,  k, I equal in 
pairs. For noncentrosymmetric structures those that 

survive  have  either i = j and k = I or i = l and j = k, so 
that 

(1) ( 1 2 ) :  2 Z Jftl2l.fklZ(IJilZ)(IJk Iz) 
i7~k 

+ Z Ift l ' (IJ~ 14) (20) 
i 

= 2 ~ p~pktftl21fklZ+ Zq~l f t  j4, (21) 
i-Ok i 

in view of equation (13) and the definition of qi: The 
double sum in equation (21) is almost separable into 
two factors, and becomes so if the terms with i = k are 
supplied. To preserve the equality these terms must be 
subtracted again, so that 

1 (1) ( I 2 ) = 2  p/If t  12 - - ~ ( 2 p 2 - - q i ) l Z I  4, (22) 

in agreement with equation (5) with k = 1. 
2.2. For centrosymmetric structures J* = J~, though 

f~' is only equal to f t  in the absence of dispersion. 
There are thus more terms surviving when 12 is 
averaged over a large set of values of hkl: those with 
i = j ,  k = l; those with i = k , j  = l; and those with i = l, 
j = k. Thus 

([) (12) : ~ PiPklftl21fkl 2 
i~k 

+ Z PiPJlZ(.f/*) z 
i~l 

+ Z PiPslftlzJ~lz 
i ~j 

+ Z q,I f t  14. (23) 
i 

Once again the double sums are almost separable into 
two factors, and become so if the terms with i = k etc. 
are supplied. On adding and subtracting these terms, to 
preserve the equality, equation (23) becomes 

(,, ( I2~:  2 (~_/"pilft[2) 2+ (~i Pifi2 ) [~j pj(fj,)2] 

- Z (3 p~ - q,)l f/14. (24)  
i 

On using equation (4) for Z' and the modulus of 

S : Z Pifi 2 (25) 
i 

for S, equation (5) with k = 2 follows. 
2.3. The mean value of IJil 4 can be obtained 

straightforwardly, though often tediously, from the 
expressions for J given in International Tables. For 
example, for the space group Pmm2 and an atom in the 
general position, 

J : 4(cos 27rhx cos 27rky cos 27dz 

+ i cos 2zrhx cos 2zrky sin 2zdz), (26) 

IJI 2 = 16 cos 2 2rchx cos 2 2zcky (cos z 2zdz + sin 2 2zdz) 

- 16 cos 2 2zrhx cos z 2zcky, (27) 
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IJI 4 -- 256 cos 4 2nhx cos 4 2zrky. (28) 

On averaging over a large set of values of h the mean 
value of cos 4 2zchx is ], and similarly for the factor in 
ky. For this space group and this position, therefore, 

q =  ( I J l ' ) =  36, (29) 

Q = 2p  2 - q = - 4 .  (30) 

With slightly more complication the same result is 
obtained for the general reflexions and the general 
positions for Pmc2 l, Pce2, Pma2, Pca2~, Pnc2, Pmn2~, 
Pba2, Pna21 and Pnn2, the other space groups with 
primitive lattices in the point group mm2. The end- and 
body-centred space groups of this point group differ only 
through trivial factors (§ 4.1), but for Fdd2 half the 
reflexions have quite a different form for !JI 4, and 
hence essentially different values of q and Q. For 
special sets of reflexions even the space groups with 
primitive lattices may give other values of q and Q. 

3. Patterson interpretation of mean-square intensity 

3.1. It is well known that the Patterson synthesis 
(Patterson, 1935) can be regarded as a pseudo- 
structure consisting of pseudo-atoms of 'atomic' scat- 
tcring factor f *  f s  situated at positions corresponding 
to the vector joining the atoms i and j of the real 
structure, and that the 'structure factors' of the pseudo- 
structure are equal to the intensities of the real structure 
[for an elementary discussion see, for example, Wilson 
(1970, pp. 177-178)1. The 'intensities' given by the 
pseudo-structure are thus equal to the squares of the 
intensities of the real structure, and their mean value is 
thus what is required in the evaluation of the variance 
of the intensities of the real structure. By analogy with 
the result 

(1)  = (IFI 2) = Z [f/j2 (31) 
i 

for the real structure, one obtains 

( I  2) -- ( ( I F I : ) 2 ) -  - ~ If~*fjl 2 (32) 
u 

= \~ I f  if21 f j l  2 (33) 
i j  

for the pseudo-structure, allowances being made in 
equation (3 I) Ibr coincidences of atoms (Wilson, 1942) 
and in equation (33) for coincidences of Patterson 
pseudo-atoms. In the case of the real structure 
coincidences do not occur for general hkl refiexions, 
but may do so for zones such as hkO or rows such as 
00l (Wilson, 1950a,b). For the Patterson pseudo- 
structure, however, all self vectors (i = j )  are bound to 
coincide at the origin, whatever the space group, and 
there may be other coincidences for general reflexions 
in many space groups, and coincidences for zones and 
rows in many more space groups. 

3.2. For the calculation of Pi and qi one need only 
consider point atoms occupying one Wyckoff position. 
The mean intensity is thus Pi for the general reflexions, 
but possibly higher for zones and rows; coincidences 
increasing Pi are immediately deducible from Tables l 
and 2 of Wilson (1950b)or Table 3 of Rogers (1950). 
The mean (intensity) 2 will be qr There are necessarily 
Pi point pseudo-atoms coinciding at the origin of the 
Patterson pseudo-structure. If there are no other 
coincidences there will be a further pi(p~ - l) point 
pseudo-atoms, so that 

qi = (Pi) 2 + P i ( P i -  1) (34) 

-- 2 p ~ - p , .  (35) 

The corresponding values of Qi are 

(noncentrosymmetric) Qi = 2 p~ - qi 

=Pi,  (36) 

(centrosymmetric) Qi = 3 p~ - qi 

= p2 + Pi. (37) 

Whether or not there are further coincidences, the 
Patterson approach expresses qi as a sum of integers, 
and thus q~ and Qi are necessarily integers - a 
deduction by no means obvious from the interpretation 
of q~ as the mean value of the fourth power of the 
modulus of the trigonometric structure factor. 

3.3. It is clear that there cannot be further vector 
coincidences if p~ is three or less - the minimum 
possibility for a multiple non-origin peak arises for a 
Wyckoff position with four points at the corners of a 
parallelogram - so that the values of qi and Qi given by 
equations (35)--(37) will be correct for all space groups 
with primitive lattices in the point groups 1, 1, 2, m and 
3. For other space groups these equations set mini- 
mum values for q~ and maximum values for Qr 

3.4. The point groups with general Wyckoff 
positions of multiplicity four are 2/m, 222, mm2, 4 and 
4. In 222 and 4 the points do not form a parallelogram, 
and equations (35) and (36) apply. In P2/m, Pmm2 
and P4 the points form an obvious rectangle or square, 
so that the Patterson map consists of a fourfold 
coincidence at the origin, four vectors of single weight 
(the diagonals of the rectangle or square, counted in 
both directions), and four vectors of double weight (the 
parallel sides of the rectangle or square, counted in both 
directions). The mean-square Patterson 'intensity' is 
thus 

qi = 4(1) 2 + 4(2) 2 + 42 

= 36, (38) 
so that 

Qi = 2(4) z -  36 
= - 4  (39) 

in the noncentrosymmetric space groups (Prom2, as 
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already derived by the structure-factor method in § 2.3, 
and P4), and 

Q~= 3(4) 2 -  36 = 12 (40) 

in the centrosymmetric space group P2/m. The other 
space groups with primitive lattices in the point groups 
2/m and mm2 also have Wyckoff positions in the form 
of a parallelogram (not necessarily right-angled), so the 
same values of qi and Qi apply. (For some space groups 
one of the points conventionally tabulated must be 
ignored, and replaced by an equivalent point in an 
adjoining unit cell, before the parallelogram is obvious.) 

There are three other space groups with primitive 
lattices in the point group 4: P4~, P42, and P43. Of 
these, P42 exhibits a parallelogram inclined to the four- 
fold axis (not perpendicular to it, as in P4), and so has 
the same values of qi and Qi as P4, but P4~ and P43 do 
not form parallelograms, and for them qi and Q~ revert 
to those of equations (35) and (36). The difference in 
behaviour of the primitive space groups in the point 
groups mm2 and 4 illustrates the empirical rule, 
mentioned in § 1.3, that the values of q~ and Q~ depend 
only on the point group for the general reflexions if 
there is no single symmetry element present with 
multiplicity higher than three, whereas they may 
depend on the space group if there is a single symmetry 
element with multiplicity four or more. The formation, 
or otherwise, of parallelograms, polygons or prisms 
with parallel edges goes some way toward giving it a 
theoretical foundation. A further property of P4~ and 
P49 may be mentioned in passing: for the present 
purposes their statistical behaviour is the same as that 
of P4 when l is even, but like that of P2 with two 
independent groups of two atoms when l is odd. Other 
space groups with fourfold or sixfold screw axes behave 
analogously; the significance, or otherwise, of this 
behaviour has not been pursued. 

3.5. Use of equations (35) and (36) with inequality 
signs inserted, 

qi > _ 2p~-- Pi, (41) 

(1) Qi < Pi, (42) 

led to the discovery of several errors in the trial cal- 
culations of (IJtl 4) for noncentrosymmetric space 
groups. For centrosymmetric space groups equation 
(41) is not very limiting, and the equivalent of equation 
(42), 

(i) Q, < P~ + Pi, (43) 

obtained by inserting the inequality sign in equation 
(37), is almost useless. More informative equations can 
be obtained in the following way. For space groups 
other than Pi ,  a centre of symmetry forces the vector 
between the points of the Wyckoff position to be 
parallel in pairs, except for the vectors between points 
actually related by the centre of symmetry. This is a 
special case of the property noted by Patterson (1949): 

a centrosymmetric group of atoms is forced by an 
external crystallographic centre of symmetry to be 
parallel to its centrosymmetrically related counterpart. 
In the present application the 'centrosymmetric group' 
consists only of two Wyckoff points. The Patterson map 
of the Wyckoff position thus consists of p~ self vectors 
coinciding at the origin, p~ vectors of single weight 
joining points related by the centre of symmetry, and 
~Ptl ( P i -  2) vectors of double weight. Since any further 
coincidences would increase q~, 

(i) qi >- (pi)2 + pi(l)2 + ½Pl(Pi- 2)(2) 2 

--- 3 p~ - 3 p~, (44) 
and 

(i) Q l < 3 p r  (45) 

These equations led similarly to the discovery of 
numerical errors in the trial calculations for centro- 
symmetric space groups. Similar Patterson cal- 
culations can be made for other symmetry elements 
and combinations of them; a few are collected in Table 
6. They all give lower bounds for q~ and upper bounds 
for Q~, and there is no obvious way of fixing the 
corresponding upper and lower bounds. For some 
space groups qi is very large and positive, Qi large and 
negative (2376 and -648  for P6/mmm, 8784 and 
-1872  for Pm3m). Some guidance concerning coin- 
cidences leading to such large values can be obtained 
from Table 1 of Buerger (1950), but I have not been 
able to formulate a method of deducing necessary and 
sufficient conditions from it. 

4. Effect of centring 

4.1. Some space groups with centred lattices (such as 
Cmm2, Imm2, Fmm2; Cmmm, Fmmm, Immm) differ 
from the corresponding space groups with primitive 
lattices (Pmm2; Pmmm) only in that the multiplicity of 
the Wyckoff position is doubled or quadrupled by the 
translations implicit in the lattice. For such space 
groups Pt is multiplied by two for body- or end-centred 
lattices and by four for face-centred lattices; the 
reflexions actually present are enhanced by a factor of 
22 or 42 , but only one-half or one-quarter of the 
reflexions have non-zero intensity. Similarly the values 
of qi are increased by factors of 8 = ,)t(2)4 and 64 = 
~(4) 4 respectively. The values of Pt, qi and Qi are only 
trivially different from those of the primitive space 
groups in such cases. For other space groups (Foster & 
Hargreaves noted Fdd2 and Fddd; other examples are 
I41/a, and 141md) there is no corresponding primitive 
space group, and p,,, qt and Qi have to be calculated 
independently. 

4.2. Values of Pt, qt and Qt for space groups with 
body-, end-, and face-centring are given in Tables 3, 4 
and 5 respectively. For ease of reference those that 
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differ only trivially from the corresponding space 
groups with primitive lattices are included, as well as 
those that depend essentially on the lattice centring. 

5. Zones and rows of  reflexions 

5.1. Certain zones or rows of reflexions in space 
groups of symmetry higher than P1 differ in their 
statistical properties from those of the general reflex- 
ions. These special reflexions, in the context of this 
paper, correspond to those of a two-dimensional crystal 
produced by projecting the real crystal along an axis on 
to a plane, or along a plane on to an axis. In a sense, 
therefore, there is nothing to be said about them that is 
not implicit in Table 1, which gives the properties of the 
line and plane groups. The plane groups corresponding 
to the special reflexions are given in International 
Tables for each space group. 

5.2. There are two features that make special 
reflexions of interest in the present context. First, a pro- 
jection can be centrosymmetric even when the space 
group is not, thus changing k in equation (5) and later 
equations from 1 to 2. (The converse cannot occur.) 
For example, the special reflexions with h or k or l zero 
for the space group P2~2,21 have p~ unchanged at 4, 
but q~ increases from 28 to 36 and Q~ from 4 to 12, the 
values for the plane group pgg. 

The second feature is that atoms that are distinct in 
space may coincide in projection. The easiest of these 
coincidences to visualize is that of a mirror plane; a pair 
of atoms of atomic scattering factor f at x,y,z; x,y,~: 
becomes a single 'atom' of atomic scattering factor 
2 f  in the projection along c on to the plane, and must 

Table 7. Some statist&al properties of  special reflexions 
for the monoclinic space groups with primitive lattices 

and general Wyckoff positions, setting c unique 

Space hk0 
group Pt qi Qi 

P2 2 6 6 
P21 2 6 6 

Pm 4 16 16 
Pb 4 16 16 

0 0 0 
2 8 8 

P2/m 8 96 96 
P2]m 8 96 96 

P2/b 8 96 96 
0 0 0 
4 48 48 

P21/b 8 96 96 
0 0 0 
4 48 48 

OOl 
Pi qi Oi 

4 16 16 
4 16 16 
0 0 0 
2 8 8 
2 6 6 
2 6 6 

8 96 
8 96 
0 0 
4 48 
8 96 

8 96 
0 0 
4 48 

Notes 

I even 
I odd 
average 

k even 
k odd 
average 

96 
96 I even 

0 l odd 
48 average 
96 k even 

k odd 
average 

96 k, I even 
0 k, l odd 

48 average 

be so counted in calculating the statistical properties of 
the hkO reflexions (Wilson, 1942, 1950a,b). Thus the 
values 4, 36, 12 for p~, qi, Qi for the hkl reflexions in the 
space group P2/m become 8, 96, 96 for the hk0 
reflexions. These correspond to the values for the plane 
group p2 scaled up by the factor 22 or  24, as 
appropriate. 

5.3. Scaling up the plane-group values, or working 
from the Patterson-map approach, needs very clear 
thinking about weighting of the multiple 'atoms' and the 
corresponding vectors. In view of possible com- 
plications, if the statistical properties of special reflex- 
ions are required it is probably best to calculate them 
ab initio from the structure-factor expressions in Inter- 
national Tables. A change in k is indicated by the 
vanishing of the imaginary part of the structure factor 
(or, in some space groups where the choice of origin 
has not been made with this application in view, by the 
vanishing of the real and the imaginary parts alter- 
nately). The calculations of q~ are somewhat less 
tedious than for the general reflexions, but it has not 
been thought worth while to tabulate them in detail. For 
the sake of illustration, those for the plane groups are 
given in Table 1, and those for the primitive mono- 
clinic space groups in Table 7. 

6. Special positions 

6.1. The current International Tables give no help in 
the calculations of Pi, qi and Qi for atoms in the special 
Wyckoff positions, since the points of a special position 
do not necessarily conform to a symmetry group, 
though anything occupying one of them must have the 
symmetry of a point group. Their arrangement has 
whatever symmetry is left after the symmetry of this 
point group has been removed from the symmetry of 
the space group. 'Special positions always have as point 
symmetry a point group. Removing the operations of 
this point group from the space group means to remove 
the operations of a complete symmorphic space group 
which is a subgroup of the space group in question. 
What remains are the cosets of this subgroup with 
respect to the non-removed space-group operations. 
The latter class includes all glides and screws and those 
point-group operations which are not part of the point 
symmetry of the special position. These cosets do not 
form a group and are to be considered as just a set of 
operations' (Hahn, 1977). For some of the more 
symmetric space groups the considerations of Fischer 
(1971, 1973; Koch, 1974)are relevant. 

6.2. It seems, therefore, that it is necessary to obtain 
the values of qi directly from the coordinates of the 
special position, either by first writing the expression for 
the trigonometric structure factor and proceeding as in 
§ 2.3, or by constructing the Patterson map, as in § 3. 
Any special position involves, of course, less work than 
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does the general position of  the same space group, but 
some space groups have many special positions 
(P6/mmm, for example, has 17, and Pm3m has 13). It 
has not been thought worth while to undertake the task 
without a practical end in view. 

I am indebted to Professors Theo Hahn and Werner 
Fischer for helpful correspondence. 
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Form factors calculated from several theoretical models show that the Xa method is accurate to about 1%. 
With the latter scheme and the Watson-sphere model the atomic form factors for 02- and N 3- are computed 
for varying sphere radii. To a first approximation this radial variation accounts for the different environ- 
ments of such ions. Deviations of up to 25% in the scattering factors occur when compared with the results 
obtained from the wave functions of the corresponding neutral atom. 

1. Introduction 

Coherent X-ray scattering factors are available for 
atoms (see, for example, Fraga,  Karwowski  & Saxena, 
1976) and some positive and negative ions (Cromer & 
Mann, 1968). However, free negative ions such as 0 2- 
or N 3- are unstable and therefore the corresponding 

form factors are not easily obtainable. For an investi- 
gation of Li3N (Schulz & Schwarz, 1978) we were 
interested in studying the effects of an ionic crystal on 
the form factors of ions, especially on negative ions 
which are otherwise unstable. 

Although free 0 2- ions are not observed experi- 
mentally, crystalline 0 2- ions are stabilized by their 


